Cells

Sizes, types, characteristics

Eukaryote vs. Prokaryote

Two Basic Types of Cells

- Prokaryotes:
 - prounounced: pro-carry-oats
- Eukaryotes
 - Proun: you-carry-oats

Eukaryotic versus Prokaryotic Cells

- Prokaryotic Cells lacking a nucleus and other membrane-bound organelles.
- Eukaryotic Cells containing a nucleus.
 - Organelles Membrane-bound bodies found within eukaryotic cells.

Prokaryotic cell

Cell size comparison

most bacteria

- 1-10 microns eukaryotic cells
 - 10-100 microns

micron = micrometer = 1/1,000,000 meter

diameter of human hair = ~20 microns

Prokaryote - Bacteria

A. Prokaryotes

Small, simple cells (relative to eukaryotes)
Size: about 1 µm (1 micron)
No internal membrane-bounded organelles
No nucleus
Simple cell division

Contain the

1. true bacteria (Eubacteria)

2. archaebacteria

1. True Bacteria = Eubacteria

- Majority of bacteria
- Examples include: E.
 coli, Lactobacillus
 (yogurt), Lyme disease

Eubacteria

Peptidoglycan cell walls (carbs & AA)

•Separated into Gram + and - forms

2. Archaebacteria

- Live in extreme environments: high salt, high temps
- Different cell wall
- Very different membrane lipids
- Unusual nucleic acid sequence

Archaeabacteria

The prokaryptes Archaebacteria are organized into 3 types based on physiology,

- Methanogens produce methane
- Extreme halophiles live at very high concentrations of salt (NaCl);
- Extreme (hyper) thermophiles live at very high temperatures.

Bacteria in the Environment

example:
Iron
utilizing
Baceria

- A) An acid hot spring in Yellowstone is rich in iron and sulfur.
- B) A black smoker chimney in the deep sea emits iron sulfides at very high temperatures (270 to 380 degrees C).

Bacteria in an ecosystem

What functions do they perform?

Bacteria in your Intestine;)

Bacteria in your Intestine.....

What functions do they perform?

B. Eukaryotes

- Bigger cells: 10-100 µm
- True nucleus
- Membrane-bounded structures inside. Called organelles
- Divide by a complex, well-organized mitotic process

Liver Cell 9,400x

Eukaryotic cell

 Have membrane-bound organelles, including a nucleus

Eukaryotes

 Larger more complex cells that make up most familiar life forms: plants, animals, fungi, algae

Comparing Prokaryotes and Eukaryotes

a This bacterium,
Streptococcus
pneumoniae, is an
example of a
prokaryotic cell.
It has been magnified approximately 40,000
times in this
micrograph.

Two	Cell	Type	S
-----	------	------	---

Prokaryote	Eukaryote	
No nucleus	Nucleus	
No membrane- bound organelles	Many organelles	
Most 1–10 μm in size	Many 2–1,000 μm in size	
Evolved 3.5 billion years ago	Evolved 1.5 billion years ago	
Only bacteria	All other cells	

b This protist,
Chilodonella, is
an example of a
eukaryotic cell.
It has been magnified 150 times
in this micrograph.

Protists – Amoeboid protozoans

Protists – Ciliated protozoans

Surface area increases while total volume remains constant

